Week 3-chapter2

Key Ideas

- Determine how projects are selected and understand the various approached to the SDLC that are used to structure a development project.
- Understand how to select a project methodology based on project characteristics and become familiar with project estimation.

• Create a project work plan and understand how to staff a project.

• Important techniques to coordinate and manage a project, and how to manage risk on the project.

PROJECT SELECTION

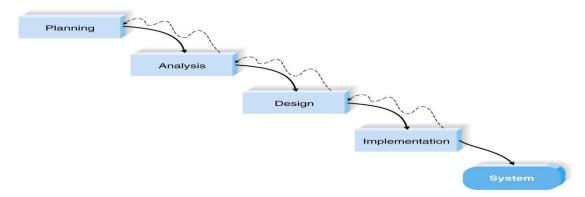
- Systems projects today are evaluated in the context of an entire portfolio of projects.
- Determination of a project's contribution to an entire portfolio of a project reinforces the need for a feasibility study.
- Portfolio management takes into consideration the different of projects that exist in an organization
 - An approval committee must be selective about where to allocate resources as most organizations have limited funds.

If there are three potentially high-payoff projects, and they all have the same risk, then maybe only one of the projects will be selected.

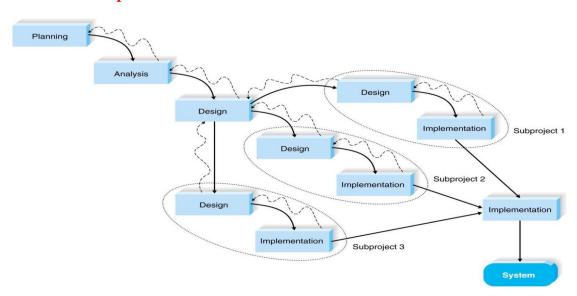
How Do Projects Begin?

- Business needs should drive projects.
- Project sponsor recognizes business need for new system and desires to see it implemented.
- Business needs determine the system's functionality (what it will do).
- The project's business value should be clear.

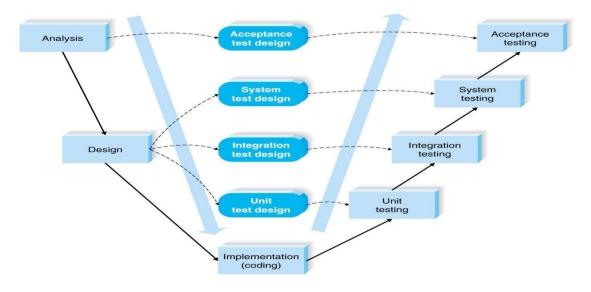
CREATING THE PROJECT PLAN

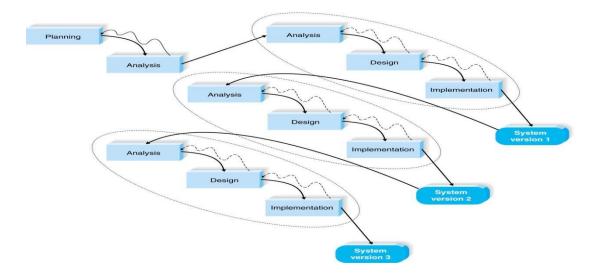

Project Methodology

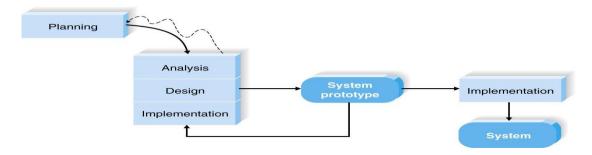
\Options

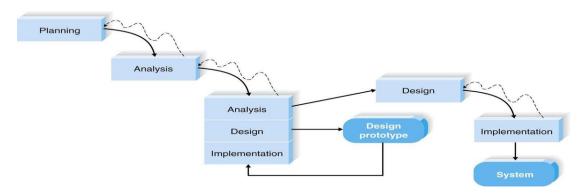

- Waterfall Development
- Parallel Development
- V-model (variation of the Waterfall Development
- Rapid Application Development (RAD)
- Iterative Development
- Agile Development

١

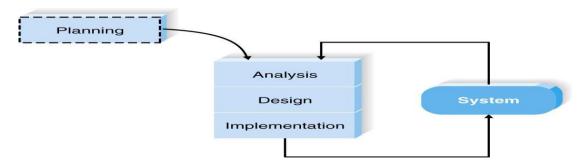

Waterfall Development


Parallel Development


V-model


Iterative Development

Example of System Prototyping


Example of Throwaway Prototyping

Agile Development

- A group of programming-centric methodologies that focus on streamlining the SDLC.
- Includes face-to-face communication
- Extreme programming emphasizes customer satisfaction and teamwork.

Example of Extreme Programming

Selecting the Appropriate Development Methodology

Criteria for Selecting a Methodology

Usefulness in Developing Systems	Waterfall	Parallel	V-Model	Iterative	System Prototyping	Throwaway Prototyping	Extreme Programming
with unclear user requirements	Poor	Poor	Poor	Good	Excellent	Excellent	Excellent
with unfamiliar technology	Poor	Poor	Poor	Good	Poor	Excellent	Poor
that are complex	Good	Good	Good	Good	Poor	Excellent	Poor
that are reliable	Good	Good	Excellent	Good	Poor	Excellent	Good
with short time schedule	Poor	Good	Poor	Excellent	Excellent	Good	Excellent
with schedule visibility	Poor	Poor	Poor	Excellent	Excellent	Good	Good

Important Factors to Consider

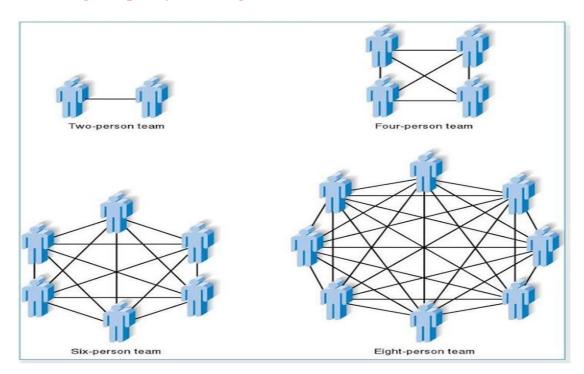
- Clarity of User Requirements
- Familiarity with Technology
- System Complexity
- System Reliability
- Short Time Schedules
- Schedule Visibility

Estimating the Project Time Frame

Estimating Project Time Using Industry Standards

	Planning	Analysis	Design	Implementation
Typical industry standards for business applications	15%	20%	35%	30%
Estimates based on actual figures for first stage of SDLC	Actual: 4 person- months	Estimated: 5.33 person- months	Estimated: 9.33 person- months	Estimated: 8 person- months
SDLC = systems develo	pment life cycle.			

Developing the Work Plan


- Identify Tasks
- The Project Work Plan

STAFFING THE PROJECT

Staffing Attributes

- Staffing levels will change over a project's lifetime
- Adding staff may add more overhead than additional labor
- Using teams of 8-10 reporting in a hierarchical structure can reduce complexity

Increasing Complexity with Larger Teams

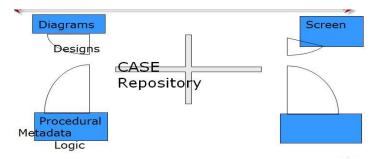
Key Definitions

- The *staffing plan* describes the kinds of people working on the project The *project charter* describes the project's objectives and rules A *functional lead* manages a group of analysts A *technical lead* oversees progress of programmers and technical staff members

Motivation

- Use monetary rewards cautiously
- Use intrinsic rewards
 - Recognition
 - Achievement
 - The work itself
 - Responsibility
 - Advancement
 - Chance to learn new skills

Handling Conflict


- Clearly define project plans
- Recognize project importance to organization
- Project charter listing norms and groundrules
- Develop schedule commitments ahead of time
- Forecast other priorities and their possible impact on the project

COORDINATING PROJECT ACTIVITIES

CASE Tools

Planning	Analysis	Design	Implementation	
Upper CASE		Lower		
	Integrated C	ASE (I-CA	SE)	

CASE Components

Standards

- Examples
 - Formal rules for naming files
 - · Forms indicating goals reached
 - Programming guidelines

Documentation

- · Project binder
- Table of contents
- Continual updating

MANAGING AND CONTROLLING THE PROJECT

Timeboxing

- Fixed deadline
- Reduced functionality, if necessary
- Fewer "finishing touches"

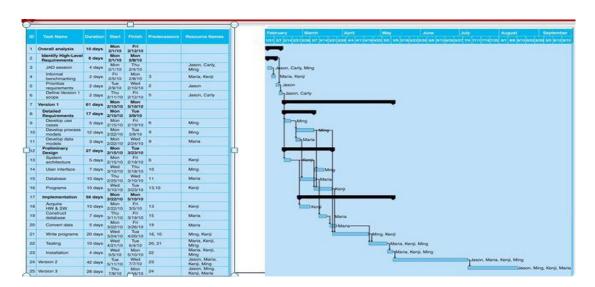
Timeboxing Steps

- 1. Set delivery date
 - Deadline should not be impossible
 - Should be set by development group
- 2. Prioritize features by importance
- 3. Build the system core
- 4. Postpone unfinished functionality
- 5. Deliver the system with core functionality
- 6. Repeat steps 3-5 to add refinements and enhancements

Managing Risk

- Risk assessment
- Actions to reduce risk
- Revised assessment

Classic Mistakes


- Overly optimistic schedule
- Failing to monitor schedule
- Failing to update schedule
- Adding people to a late project

Margins of Error in Cost and Time Estimates

		Typical Margins of Error for Well-Done Estimates		
Phase	Deliverable	Cost (%)	Schedule Time (%)	
Planning phase	System request	400	60	
	Project plan	100	25	
Analysis phase	System proposal	50	15	
Design phase	System specifications	25	10	
Source: Barry W. Boeh 2.0," in J. D. Arthur and	m and colleagues, "Cost Models for d S. M. Henry (editors) Annals of Soft easurement, Amsterdam; J. C. Baltzer	Future Software Life Cy ware Engineering Spec	cle Processes: COCOMO	

COORDINATING PROJECT ACTIVITIES

Example of a Gantt Chart

Summary

- **Project initiation** involves creating and assessing goals and expectations for a new system
- Identifying the **business value** of the new project is a key to success **Feasibility study** is concerned with insuring that technical, economic, and organizational benefits outweigh costs and risks
- **Project selection** involves viewing the project within the context of the entire project portfolio, and selecting those projects that contribute to balance in the portfolio